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Abstract ond research environment is an autonomous robot,
lily, who acquires language through the semantic as-

Multimodal dialog systems research at the Unhersity sociation of audio, visual, and haptic sensory data
of Illinois seelks to de%elop algorithms and systems Prior to implementation on one or both of these plat-
capable of robustly extraczting and adaptively corn- forms, most of our algorithms are tested using stan-
bining information about the speech and gestures of dard or locally acquired datasets.
a nave user in a noisy environment. This paper will
review our recent work in seven fields related to mul-
timodal semantic understanding of speech: audiovi- 2 Pre-Processing
sual speech recognition, multimodal user state recog-
nition, gesture recognition, face tradding, binaural 2.1 Binaural Hearing
hearing, noise-robust and high-performance acoustic
feature design, and recognition of prosody Our research on binaural hearing addresses the ex-

traction of noise-robust audio from at wo-microphone
array mounted on a physicaRy mobile platform (a

1 Introduction language-learning autonomous robot). The source
localization algorithm is based on a two channel

The purpose of this paper is to summarize ongoing Griffiths-Jim beamformer [3] and a. new phase un-

multimodal speech and dialog recognition research wrapping algorithm for accurabe estimation of time

at the Uni'ersity of Illinois. A multimodal speech difference of arrival measures [8]. The new phase La-
recognition system can be described in two distinct wrapping algorithm is trained using many measure-

stages: (1) rob st audiovisual feabure extraction, and ments of TDOAs in order to creabe an accurate spa-
(2) speech and user state recognition using dynamic tial map of TDOA pattern as a function of arrival
Bayesian networks. Features are extracted from au- azimuth and elevation. These can then be used both
diovisual input in order to optimally represent pho- to cancel interfering noise and to get a faithful rep-
netic, visemic, gestural, and prosodic information. resentation of the desired speech signal. Preliminary
Our specific ongoing research projects include bin- results show that a speech signal can be accurately
aural hearing (array processing on a mobile plat- locabed in noisy laboratory room within a few Mil-
form), biomimetic noise-robust acoustic feature ex- liseconds and with ten degree accuracy at a distance
traction, maximum mutual information acousbic fea- of '-4 meters (acoustic far field).
ture design, and face tradcing. Customized Dynamic In the current implementation, detection of a
Bayesian networks have been designed for three dif- speech signal triggers physical rotahion of the receiver
firent recognition tasks: audiovisual speech recog- platform (the robot's 'ead") so that it faces the pri-
nition using coupled HMNdMs, user state recognition mary tallker. By physically aligning the "head" of the
using hierarchical H]flMs, and recognition of speak- robot with the direction of primary source arrival, we
ing rabe using hidden-mode explihcit-duration acoustic ame able to use extremely efficient off- axis cancellation
lfvEs. algorithms for improved SU-R [9].

Image and Speech Processing research at the Uni-
versity of Illinois is currently tested in two ongoing 2.2 Acoustic Features
research prototype environments. The first research
probotype environment is an experimental computing Standard speech recognition features (including
facility for beaching children about physics. The sec- MNFCC, PIP, and LPCC) result in isolabed digit

Multimodal Speech Recognition Workshop 2002 BEST AVAILABLE Copy



," .... No LM Phone Bigram
Features 35dB I10dB 35dB 110d0

...-. LPCC 56 40 59 46
MFCC 58 42 63 48
FM 58 42 62 46

.4 N IA 59 43 63 49I-

Table I Phoneme recognition correctness in four con-
- ditions. Features selected using a. maximum mutual

"information criterion (DMAIA) provide superior per-
formance in all four conditions.

-4- U-Md•nl

acoustic feature vecbor. It is not possible to accu-
0, , ,. rately train observaion PDFs of dimension 120 using

existing data. sets, but it is possible to select a. sub-

Figure 1: WER: isolaked digit recognition in white vector using a. quantitaive optimality criterion. In

noise with two sbandard feature sets, IFCC and our research, we select a. 39-dimensional feature sub-

LPCC, and two novel feabture sets, 12CC with %u vector from a. list of 160 candidate features in order

index and with frame index (fr Yto optinize the mutual information between features
e(from [6]). and phoneme labels [12]. Optimality is determined

using a clean speech database (TIfIT) with no lan-
recognition errorrates of approximately 60% at 10dB guage model, butthe resulting optimality generalizes.
SNR, and nearly 80% at 0dB SNR. In 1992, Med- As shown in Table 1, the resulting M•EA (maximum
dis and Hewitt propcsed a biomimetic method for mutual information acoustic) feature vector outper-
recognition of moiced speech in high noise environ- forms all standard feaurewecbors under atleastthree
ments [10]. Meddis and Hewitt proposed filtering conditions: in quiet and at 10dB SNYR, without alan-
a noisy speech signal into many bands, computing guagemodelandwithanoptimizedphonemebigram.
the auto correlation function R (r) in each sub-band, Larger improvements may be obtained by testing the
and then estimating the speech autocorrelation R(r) 5-10 best feature vectors generated during the mutual
by optimally selecting and adding together the high- information search. The best recognition accuracy,
SNR sub-band autocorrelations. In our work [6], we obtained using the feature set with second-best mu-
have replaced Meddis and Hewitt's optimal selection bual information, was 62% with no language model
algorithm by an optimal scaling algorithm. Specifi- in quiet conditions.
cally, we estimabe the sub-band SN-R vk using a stan-
dard pitch prediction coefficient, i.e. 2.3 Face Tracking

Speech Energy in Band k AR (To) Research has shown that facial and vocal-tract mo-
Tobal Energy in Band k R(0) (1) tions are highly correlated during speech pmduc-

where To is the globally optimum pitch period. The bon [20]. Speech recognition using both audio/visual
features is shown to be more robust in noisy environ-

maximum lilihood estimateof the noise-free speech ments [5]. Analysis of non-rigid human facial motion
signal aut correlation is bhn is a ley component for acquiring visual features for

Ah(7-) = k S k v (r) (2) audio/visual speech recognition.

k )In the past seeral years, research in our group has
led to a. robust 3D facial motion tracling system [16].

In isolated digit recognition experiments, the use of A 3D non-rigid facial motion model is manually con-
equations 1 and 2 reduced word error rate by more structed based on piecewise Bezier volume deforma,-
than a factor of three in white noise at 10dB thro ugh tion model (PBVD). It is used to constrain the noisy
-10dB, and by more than a faxtor of two in babble low-level optical flow. The tracking is done in a multi-
noise at the same SmRs (Figure 1). resolution manner such that higher speed could be

The phonological features implemented at a speech achieved. It runs at 5 fps on an SGI Onyx2 machine.
landmark influence the acoustic spectrum at dis- This tracking aligorithm has been successfully used for
tances of 50-100ms [4, 19]. Complete representation audio-visual speech recognition and bimodal emotion
of a lOOms spectrogram requires a 120-dimensional recognition.
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"manifxold spanned by pairs of basis states. We be-

lieve that, based on these preliminary results, it will
be possible to map all observed gestures into a low-
dimensional gestural manifold, resulting in efficient
and a•ccurate gesture recognition.

,a', 03 Dynamic Bayesian Networks

3.1 Lip Reading

"The focus of our research in lip reading is a novel ap-
proach to the fusion problem in audio-visual speech
processing and recognition. Our fusion algorithm is
built upon the framework of coupled hidden Maxkov
models (CHMNvs). CBMMs are probabilistic in-

Figure 2: Demonstration of our face tracldng system. fierence graphs that have hidden Marlmv models
(HIfvMs) as sub-graphs. Chains in the correspond-
ing inference graph are coupled through matrices of

2.4 Gesture Recognition conditional probabilities modeling temporal depen-
dencies between their hidden state variables. The

Hand gestures are capable of delivering information coupling probabilities are both cross chain and cross
not presented in speech [14]. Controlling gesture can time Thelateris essential for capturing temporal in-
be used to provide commands to the system. Nay- fluences between chains. In a bimodal speech recog-
igation gestures provide information for manipulat- nition system, two-chain CIflfIs are deployed, with
ing virtual objects, and for selecting point objects or one chain being assciabed with the acoustic obser-
large regions on the screen. Conversational gestures vations, the other with the visual features. Under
provide subtle cues to sentence meaning in normal this framework, the fusionof thetwo modalitiestakes
human interaction. Automated hand trazcing and place during the classification stage The particular
gesture recognition can hdep improve the performance topology of the CHMM ensures that the learning and
of human-machine interface. classification are based on the audio and visual do-

We have investigated both appearance-based ges- mains jointly, while allowing asynclironies between
ture recognition (using neural network-based pat- the two information channels.
tern recognition bechniques) and model-based gesture In essence, C-IflaMs axe directed graphical models
recognition [18, 17]. In model-based recognition, the of stochastic processes and are a special type of Dy-
configuration of a hand model is first determined by namic Bayesian Networks (DBNs). The DBNs gen-
providing a set of joint angle parameters. The 21) eralize the M&Ms by representing the hidden states
projection of this hand model, determined by the as state variables, and allow the states to have com-
translation and orientation of the model relative to plex interdependencies. The DBN point of view fa-
a viewing portal, is compared with the hand image cilitates the development of inference algorithms for
from input video. Estimate of the correct input hand the CHKMMs. Specifically, two inference algorithms
configuration is determined by the best matching pro- are proposed in this work. Both of the algorithms are
jection. A complete description of the global hand exact methods. The first is an extension of the well-
position and all finger joint angles requires specifica,- known forward-backward algorithm from the HIfM
tion of 21 joint angles. Using both known anatom- literatures. The second is a strategy of converting
ical constraints and PCA to reduce dimensionality, CIfvMs to mathematically equivalent HlfvMs, and
we can initially reduce the dimensionality of the ges- carrying out learning in the transformed models.
tural description from 21 to 7 independent dimen- The benefits of the proposed fusion scheme are
sions while kceeping 95% of the information. In this confirmed by a series of preliminary experiments
7-dimensional space, it is possible to define 28 ba, on audio-visual speech recognition. Visual fea-
sis configurations, consisting of the configurations in tures based on lip geometry are used in the exper-
which each finger is either fully folded or completely iments. Furthermore, comparing with an acousbic-
extended. A close examination of the motion trajec- only ASR system trained using only the audio chan-
tories between these basis states shows that natural nel of the same dataset, the bimodal system consis-
hand articulations seem to lie largely in the linear bently demonstrates impro ed noise robustness across
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SNR 10dB 20dB 30dB
A 4.03 4361 J 99.10
V 42.95 42.95 42.95

A+V 110.58172.79 9.74
CMIh 335.32 1 86.58 933

Table 2: Result of experiments in audiovisual speech :Wk+ckh+§>. . ...

recognition (measured in %word accuracy). A indi- . .... .

cabes the audio-only system; V indicates the visual-
only systemA+V indicates a bimodal system using .-. 4. &'.......

early integration; and CI{MM indicates the CBM- :-....h..-...... ...-... . . .....
based system. W..-..

a wide range of SMR levels. : :• @ .

3.2 Proso dy Figure 3: Architecture for detecting e'ents in the of-
Our approach to the recognition of prosody is the fice scenario
use of a 'idden mode veriable" [13] to condition the
explicit duration PDFs of a CVDKMM [. In our
prototype algorithm, tle state space consists of par- net-work (figure 3). In a hierarchical DBN, each
zLeI phonetc state v'wia].es: (qt) and prosodic stateL
variables phoneTic dwellt f state v e () ad pradic modality (audio, lip reading, gesture, and prosody)
variables (k•). The dwell time of state q, is a random ismdldungaoait-enetKM .Ec

teis modeled using a. mo daliy- dependent BM . Each

vaxriable 4 with PDF depending p(4Qq,k). At Lhe modality-dependent HNMM is searched in order to
end of the specified dwell time, the phonetic vaxri able generate the N transcriptions that best match the
always changes state (no self-loops), but the prosdic observed data in the given modality. The likelihood
state vaxriable may or may not change state. Thus, of each transcription is then estimated using a con-
for example, if (k eslow, medium, fast) represents strained forward-backward algorithm, generating the
speaking rate, it may be reasonable to allow k to probability of state residency during every frame.
change state at any word boundary with a small prob- These probabilities are fed forward to the supervisor
ability. HMM, which integrates them to determine a single

In order to allow efficient experiments, we hate transcription of the sentence in order to maximize the
modified HTK to make use of Ferguson's EM al- a posteriori transcription probability. By imposing a
gorithm for explicit-duration ItM& [1, 2]. Fergu- prior on the probability distributions learned by the
sn's algorithm is an order of magnitude faster than model for the purpose of increasing conditional en-
most algorithms for the explicit-duration 1KM~~s. tropy, we have demonstrated a 10% increase in user
The computational complexity of the algorithm is state classification performance [15, 11].
O(NT(N + T)), where N is the number of states,
T is the number of frames in the input signal, and
(O(N 2 T)) is the complexity of an BfvM without ex-
plicit duration. The forward algorithm computes 4 Conclusions

`j) F= (O,,...,O,,j commences att +1)

= �S�'t(i)ai Our research is intended to elucidate both the the-
Soretical and the practical requirements for effective

at(i) F F(0 1 ,. .. ,C4,i ends at t) multimodal speech understanding systems. The use

=)z " ) of speech in multimodal systems will increase our the-

- l - - oretical understanding of the problems of sensor fu-
sion and representations of multimodal signals. In-

3.3 User State Recognition creased theoretical understanding, in turn, will en-
able us to produce practical results that can be di-

Integration of a large number of sources for the pur- rectly used in state-of-the-art speech recognition sys-
pose of mulfimodal user-state recognition can be ac- tems and as part of larger systems for adanced
complished using a hierarchical dynamic Bayesian human-machine communication.
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